Novo jeito de ensinar a tabuada - III

Novo jeito de ensinar a tabuada - III


Um novo jeito de ensinar a tabuada

Discutir com os alunos sobre a relação dos produtos da multiplicação e as propriedades envolvidas nos cálculos ajuda a memorizar os resultados e a encontrar os que eles não sabem de cor


É preciso decorar apenas meia tabela
Tabuada. Ilustração: Isabelle Barreto
Clique para ampliar
Outra propriedade da multiplicação interessante para a compreensão da tabuada é a comutatividade. Ela indica que a ordem dos fatores não altera o produto, como em 8 x 4 e em 4 x 8. Com isso, quem não conhece o resultado da primeira operação, mas sabe o da segunda, consegue resolver a questão. Apoiado nessa propriedade, basta memorizar a metade dos produtos da tabela pitagórica para saber o restante dela. Isso porque os resultados se repetem a partir de um eixo de simetria na diagonal central do quadro, em que são registrados os produtos de algarismos iguais(veja nos quadrinhos uma atividade em que essa simetria é analisada). Tanto acima como abaixo da diagonal aparece o número 32, resultado do 8 x 4 e do 4 x 8. Análises como essas podem ser uma referência para resolver questões similares e colocar em jogo as relações numéricas, ressalta o argentino Horacio Itzcovich no livro La Matemática Escolar.

Cleusa lembra que essa é uma estratégia a ser colocada em prática no momento de solucionar um desafio, e não apenas mostrada como uma curiosidade. O material de formação dos professores de Matemática elaborado pelo Núcleo de Aprendizagens Prioritárias, da Argentina, também ressalta essa questão: "Não se aprendem as propriedades desconectadas de seu uso. Elas se constituem como ferramentas que nos permitem justificar e compreender procedimentos de cálculo". Para trabalhar o assunto, proponha que as crianças resolvam alguns cálculos, como:

2 x 4       4 x 2
3 x 2       2 x 3
5 x 3       3 x 5 

Em seguida, peça que analisem e comparem os resultados da primeira e da segunda coluna e digam o que observaram. Elas devem concluir que os resultados se repetem. Indague por que elas acham que isso acontece e se sempre é assim. Desafie a turma a propor outras multiplicações e experimentar inverter a ordem dos números. Libere o uso da calculadora para que possam confirmar o produto dos cálculos mais rapidamente e constatar a regularidade.

As regularidades menos evidentes

Você deve deixar claro que o resultado de uma multiplicação pode ser obtido por meio de outra. Ter isso em mente é essencial para reforçar que não é necessário decorar a tabuada mecanicamente, mas construir diferentes recursos de cálculo aproveitando o que já se conhece. A análise dessas relações se torna mais eficaz com muita discussão e um olhar atento para averiguar regularidades. A tabela pitagórica é um excelente recurso também para isso, já que organiza os produtos da multiplicação e os dispõe juntos. As primeiras conclusões a que os alunos geralmente chegam ao se debruçar sobre ela são:

- Todo número multiplicado por 10 termina em 0.

- Todo número multiplicado por 5 termina em 5 ou 0.

- Todo número multiplicado por 1 tem como resultado ele mesmo.

O registro dessas conclusões é um ótimo começo de conversa para você lançar outros questionamentos e para os estudantes notarem que a multiplicação de qualquer número por um par sempre resulta num par. Outras regularidades, menos evidentes, também são importantes: a soma dos números multiplicados por 2 e 5 está na coluna do 7, assim como a soma dos multiplicados por 3 e 4. Essa relação se baseia nas propriedades associativa e distributiva da multiplicação. Matematicamente, 7 x 6 pode ter esta representação:

(3 x 6) + (4 x 6)
18 + 24 = 42


No livro Investigações Matemáticas na Sala de Aula, o educador português João Pedro da Ponte defende que tarefas desse tipo, mais do que servirem para iniciar os alunos nas atividades de investigação, permitem desenvolver conhecimentos importantes acerca dos números, como os relacionados ao estudo dos múltiplos e aos critérios de divisibilidade. Ele afirma que a tabuada do 5 pode levar os alunos a observar que um número divisível por 5 termina com 0 ou 5. Com essas tarefas, é possível explorar várias relações. Por exemplo: será que todo número vezes 3 é ímpar? E quando é multiplicado por 6? Sempre que é preciso multiplicar por 10, basta acrescentar um 0 após o número? Por que um número vezes 1 é igual a ele mesmo?

Embora seja curioso encontrar respostas para esses questionamentos, a atividade não deve se esgotar nela mesma. É importante que o raciocínio seja novamente retomado na resolução de problemas para que aquilo que se confirmou como regra seja aplicado em outras situações (veja nos quadrinhos como os alunos utilizam essas estratégias). Ter em mente essas regularidades ajuda a checar se os resultados dos cálculos estão corretos. Sabendo, por exemplo, que o produto de uma multiplicação por 2 não pode ser ímpar, os alunos buscam outras estratégias para encontrar a resposta certa. Muitas vezes, eles aproveitam as tabuadas que consideram mais simples para resolver as mais complexas. "Quando os estudantes constroem uma rede de relações entre os números, eles conseguem compreender a tabuada e decorar os resultados da multiplicação com mais facilidade", afirma Priscila Monteiro.

Postar um comentário

0 Comentários