Novo jeito de ensinar a tabuada - II


Um novo jeito de ensinar a tabuada

Discutir com os alunos sobre a relação dos produtos da multiplicação e as propriedades envolvidas nos cálculos ajuda a memorizar os resultados e a encontrar os que eles não sabem de cor


A proporção na relação entre os números
Tabuada. Ilustração: Isabelle Barreto
Clique para ampliar
Numa tabuada, os números são organizados de uma maneira uniforme e sistemática. O resultado de 7 x 1, por exemplo, é menor que o de 7 x 2, que é menor que o de 7 x 3, e os valores aumentam de 7 em 7. Isso se repete na tabuada do 3, que varia de 3 em 3, na do 4, de 4 em 4 etc. Essa ideia se refere a uma importante propriedade da multiplicação: a proporcionalidade. Assim, quando aumenta um fator, cresce na mesma proporção o resultado da multiplicação por ele, explica Andréia Silva Brito, professora da EMEF Carlos Drummond de Andrade, em Presidente Médici, a 412 quilômetros de Porto Velho. "Quando uma grandeza dobra e a outra também dobra, quando uma triplica e a outra triplica, temos uma proporcionalidade direta." Sem observar essa regularidade, não se entende a tabuada. "A consciência de que existe um aumento proporcional é a base da compreensão da tabela pitagórica", diz Cleusa Capelossi Reis, formadora de professores de Matemática da rede municipal de São Caetano do Sul, na Grande São Paulo.

Desde os primeiros anos do Ensino Fundamental, é importante propor às crianças problemas que envolvam essa propriedade mesmo quando ainda não aprenderam o algoritmo da multiplicação. Questões do tipo "Se 1 caderno custa 3 reais, quanto custam 4 cadernos?" suscitam o uso de estratégias variadas. Desenhos podem representar cada uma das unidades do problema (nesse caso, os cadernos e os reais) e a adição sucessiva substitui a multiplicação: em vez de escrever 3 x 4, é possível escrever 3 + 3 + 3 + 3.

Esses procedimentos são muito úteis e representam uma valiosa introdução à proporcionalidade. Porém, ressalta Leika, devem ser vistos como as primeiras estratégias, e não as únicas. Isso porque são lentas e imprecisas (leia nos quadrinhos um problema com diferentes resoluções). "Cabe ao professor propor desafios em que os estudantes precisem encontrar maneiras mais rápidas e precisas de resolução e criar oportunidades para que compartilhem estratégias." Por exemplo: "Uma loja vende caixas de lápis de cor com 12 unidades cada uma. Quantos lápis existem em 5 caixas? E em 6?" Atividades desse tipo - em que se preenchem tabelas de proporcionalidade - são importantes porque permitem relacionar os valores de duas grandezas e saber que, quanto maior uma delas (no exemplo anterior, caixas), maior a outra (lápis), seguindo uma mesma variação (no caso, 12).

Compreendidas as relações entre os números da tabuada, a simples decoreba dos produtos passa a ser desnecessária. A cultura do ensino da multiplicação manda que se apresente primeiro a tabuada do 1 e depois a do 2, seguindo a ordem do menor para o maior, sem levar em conta, por exemplo, que a do 10 é mais fácil que a do 6. "Se a criança aprender simultaneamente a do 2 e a do 4, vai perceber a relação entre elas, o que ajuda a construir o conhecimento sobre ambas", explica Priscila Monteiro, consultora pedagógica da Fundação Victor Civita (FVC).

Explorar as relações entre os dobros, os triplos e os quádruplos na tabela é essencial. Por exemplo: os produtos da coluna do 8 são o dobro dos que compõem a do 4 e quatro vezes os da tabuada do 2. Por isso, multiplicar por 8 equivale a multiplicar por 4 e depois por 2. Da mesma forma, os valores da coluna do 9 correspondem ao triplo dos da coluna do 3. Esse conhecimento é útil no momento de fazer os cálculos envolvidos num problema. Se o estudante não lembra quanto é 4 x 9, mas sabe que 4 é o dobro de 2, basta resolver primeiro 2 x 9 para depois multiplicar o resultado novamente por 2. "Esse conhecimento é importante para ele recalcular as tabuadas desconhecidas com base nas que já sabe, sem precisar ter todas decoradas", explica Cleusa
.

Postar um comentário

0 Comentários