Façam uma visita na lojinha. Compra pelo PagSeguro (cartão de crédito).

Façam uma visita na lojinha. Compra pelo PagSeguro (cartão de crédito).
é só clicar na imagem

Olá! Curta a minha Página :)

Torne-se um amigo. Para participar, basta ter email e clicar em Participar deste site.

Demonstração - Curso Coordenador pedagógico.

Querido visitante, antes de salvar a imagem, procure ampliá-la para que não perca a qualidade.

Cadastre seu email para receber as postagens.

quarta-feira, 12 de fevereiro de 2014

Plano de Aula - Números positivos e negativos 7º ao 9º ano


Objetivos 
- Compreender o conceito de número negativo 
- Realizar cálculos com números negativos envolvendo adição e subtração


Conteúdos 
Introdução aos números negativos, adição e subtração


Anos 
7º ao 9º 


Tempo estimado
Nove aulas
Desenvolvimento 
1ª etapa 
Peça que os alunos completem os espaços pontilhados:



12 + …. = 27
38 + …. = 83
438 + … = 705
58 + … = 58
9 + … = 7

Para 9 + … = 7, no primeiro momento, os estudantes podem dizer que é impossível. Alguns podem propor substituir o pontilhado por -2, encontrado por intuição. De qualquer maneira, peça que todos tentem solucionar o cálculo. Explique que até aquele momento era realmente impossível, mas que eles estão prestes a dar um novo passo.

É possível que alguns perguntem se podem completar o pontilhado com algo que não é um único número, por exemplo, 7 - 9, 2 - 4 e 0 - 2. Diga que sim. Isso significa que: 9 + (7 - 9) = 7 ou 9 + (2 - 4) = 7. Sendo assim, é possível estabelecer que (a + b) - c = a + (b - c) .

Explique que podemos presumir que essa propriedade se generaliza para o cálculo que a classe usou. Esse cálculo torna-se possível pois 9 + (7 - 9) = (9 + 7) - 9 = 7. Oriente a garotada a confrontar os resultados: 7 - 9 = 2 - 4 = 1 -3 = … = 0 - 2 = - 2. Explique então que as escritas 7 - 9; 2 - 4; 0 - 2 são diferentes escritas de um número agora denominado -2. Desde o início, libere a colocação de parênteses em -2, exceto se ele estiver depois de um sinal de adição.

Note que o número negativo é introduzido como a diferença de dois positivos, o que é coerente com a concepção de fração como um número racional e o quociente de dois números inteiros, objeto estudado em geral no 6º ano. Dessa forma, recupera-se a coerência matemática da construção dos números relativos e racionais como quociente inteiro.

Solicite que o grupo escreva diversas igualdades com lacuna que tenham -2 como solução. Exemplos: 
3 + ..... = 1 ou 1 - 3 = .....
5 + (-2) = 3 ou 3 - 5 = -2
2 + (-2) = 0 ou 0 - 2 = -2

Discuta com a meninada que isso, em resumo, quer dizer que podemos realizar subtrações nas quais o primeiro número é menor que o segundo. O resultado é um número negativo, que se escreve com um sinal de menos. Então, - 2 = 0 - 2 = 1 - 3 = 7 - 9 =... Podemos ter, então, 9 + (-2) = 7. 

2ª etapa
Apresente uma lista de adições de dois termos mudando o lugar da incógnita. O cálculo é feito graças à comutatividade da adição. No final da lista, proponha que o grupo complete: …. + 7 = 0, em que o número que falta é 0 - 7 = -7. Essa tarefa irá permitir definir o oposto de um número relativo e concluir que dois números são opostos quando a soma deles é zero. Em 7 + (-7) = 0, os dois números (-7) e 7 são opostos. 

3ª etapa 
Peça que os alunos realizem as seguintes subtrações, mas antes avalie se é interessante para eles trabalhar ou não com casas decimais: 
35 - 17 = 4,8 - 7,2 =
23 - 48 = 0,25 - 1,2 =
34 - 26 = 0,75 - 0,38 =
48 - 72 = 

Em seguida, oriente o trabalho com adições dos seguintes números relativos (os resultados das adições são todos positivos): 
7 + (-4) = 
12 + (-5) = 
54 + (-29) = 
-35 +68 = 
-17 + 21 =

4ª etapa
É hora de generalizar a adição de números relativos. Os estudantes já encontraram operações do tipo 9 + (-2) = 7 e 7 - 9 = -2 nos exercícios. Mas ainda não viram adições cujo resultado é um número negativo. Pergunte, então, se conseguem imaginar uma adição cujo resultado é um número negativo ou peça que calculem -5 + 3. Para esse caso, as respostas poderão ser -8, ou -2 ou 2. Peça que justifiquem o que disserem. É possível justificar o resultado -2 citando a noção de oposto: -5 + 3 = -5 + (5 - 2) = (-5 + 5) - 2 = 0 - 2 = -2. É válido agir do mesmo modo com proposições como (-4) + (-7) = (- 4) + (4 - 11) = -11. 

5ª etapa
Apresente uma situação contextualizada a fim de mostrar como a adição modela o resultado das duas variações. Oriente a sala a completar o quadro abaixo.


Balanço da manhã Balanço da tarde Balanço do dia Balanço do dia com um número 

Operação que resume o dia 
Ganhou 10 bolas de gude Ganhou 8 bolas de gude 
Perdeu 8 bolas de gude Ganhou 12 bolas de gude 
Perdeu 6 bolas de gude Perdeu 5 bolas de gude 
Ganhou 5 bolas de gude Perdeu 8 bolas de gude 
Ganhou 9 bolas de gude Perdeu 9 bolas de gude 
Perdeu 4 bolas de gude Ganhou 0 
Ganhou 0 Perdeu 5 bolas de gude 




A tarefa permite justificar que a sucessão de duas ações se traduz por uma adição. De fato, se não houver problema na primeira linha, a segunda linha será completada tranquilamente com a operação 12 - 8. Pelo que foi visto anteriormente, é possível compreender que pode ser também (-8) + 12. Para a quarta linha (ganhou 5; perdeu 8), alguns alunos costumam escrever na última coluna 8 - 5 e não 5 - 8, outros rejeitam esse cálculo cujo resultado é 3 e não -3 como está escrito na quinta coluna. Há ainda os que propõem 5 + (-8).




É interessante ainda apresentar outros problemas que se relacionam com a vida cotidiana como: "Um elevador sobe 7 andares, depois desce 3. É possível que ele realize o mesmo deslocamento de uma só vez? (resultado de duas variações) e "Essa manhã faz -3 ° graus centígrados, a temperatura sobe 6 °C graus. Qual a nova temperatura?" (estado + variação = estado). 

6ª etapa
Desafie os estudantes a contar ao contrário a partir de 8, subtraindo sempre 3. Eles encontrarão os números 5, 2, -1, -4, -7 etc. Peça que escrevam as subtrações efetuadas:
8 - 3 = 5 
5 - 3 = 2 
2 - 3 = -1

Nesse ponto, é possível despertar uma discussão em classe, pois alguns poderão dizer que não sabem o que significa -1 e -3. Trata-se de uma subtração ainda não vista. Isso permitirá a você seguir em frente, propondo representar esse recuo de 3 em 3 numa reta numérica vertical ou horizontal. Assim, voltando 3, todos podem encontrar que -1 - 3 = -4 e que -4 - 3 = -7. Com isso, é possível representar na reta o que foi pedido da seguinte forma:



7ª etapa
Escolha um número de alto valor absoluto, como -396 e anote em um papel sem mostrar para os alunos e explique que eles deverão tentar adivinhá-lo. Peça que alguém arrisque um número. Responda somente se a sugestão é inferior ou superior ao número escondido até que alguém acerte. Explique que é preciso levar em consideração as informações obtidas com as respostas dos colegas para aumentar suas chances de ganhar.

A determinação de intervalos no qual o número está compreendido causará problema. Você pode propor aos estudantes - se eles mesmos não pensarem nisso - em representar as respostas em uma reta com escala. Você pode repetir o jogo com o número - 14,583, por exemplo. Parece difícil usar um número decimal, pois, assim, juntamos dois desafios, mas é um trabalho possível. Em resumo, a ideia é que os próprios alunos construam um jeito de comparar números. Eles podem dizer, por exemplo, que "com os negativos, a ordem é inversa". Essa observação sobre a ordem inversa é importante, pois será encontrada no trabalho com a multiplicação por -1 mais adiante.

8ª etapa
A partir de agora, o trabalho diz respeito à introdução da subtração. Apresente as colunas abaixo separadamente. Para completar a segunda coluna, peça que os estudantes observem como encontramos a subtração que aponta a solução da primeira coluna.

Para completar a terceira coluna, oriente-os a copiar os resultados da segunda coluna nos pontilhados à direita do sinal de igual. Quando tudo estiver completo, peça que a turma compare os conteúdos das duas últimas colunas e descreva as semelhanças e diferenças.


Questione o que é possível concluir com o que foi feito. Espera-se que os alunos compreendam que, para subtrair um número relativo podemos adicionar seu oposto. Ou seja, a - b = a + oposto de b. Por exemplo: 7 - (-4) = 7 + 4 = 11 e - 3 - 4 = -3 + (-4) = -7. 

Avaliação
Solicite que completem os cálculos abaixo: 

12 - ( -20) = 
-20 - (-14) = 
-42 - 42 = 
13 - 30 = 
-12 - 18 =
-39 - (-39) = 
-18 - (-20) = 
35 -25 = 
-19 - 11 = 
28 - 28 =

Se julgar necessário, justifique teoricamente a regra que está por trás dos exemplos. Há duas possibilidades:


1. Para subtrair o número positivo 4: 
-3 - 4 = -3 + 0 - 4 = -3 + ((-4)+4) - 4 = -3 + (-4) + (4 - 4) = -3 + (-4) + 0 = -3 + (-4)
Para subtrair o número negativo (-4):
-3 - (-4) = -3 + 0 - (-4) = -3 + (4 + (-4)) - (-4) = -3 + 4 + ( (-4) - (-4)) = -3 + 4 + 0 = -3 + 4

Utilizamos duas propriedades:
A soma de dois números opostos é igual a zero.
A diferença de dois números iguais é igual a zero.

2. Por exemplo: 
Para subtrair o número positivo 4: 
Com base na igualdade: 4 + …. = -3, cuja solução é -3 - 4, adicionamos (-4) aos dois membros da igualdade, obteremos (-4) + 4 + … = -3 + (-4).
Ou então 0 + … = -3 + (-4) que tem a mesma solução, ou seja, -3 - 4 = -3 + (-4) = -7
Para subtrair o número negativo (-4):
Com base na igualdade: -4 + …. = -3, cuja solução é -3 - (-4), adicionamos 4 aos dois membros da igualdade, obteremos 4 + (-4) + … = -3 + 4
Ou então 0 + … = -3 + 4 que tem a mesma solução, ou seja, -3 - (-4) = -3 + 4 = 1.

Utilizamos:
A definição da diferença.
Uma propriedade da igualdade.


Fonte: Texto Enseigner les Nombres Négatifs au Collège, elaborado pelo Instituto de Pesquisas no Ensino de Matemática (Irem, sigla em francês) da Aquitânia, na França.

Nenhum comentário:

Postar um comentário

Olá, seja bem-vindo. Não saia sem antes comentar!

Obrigada por cada comentário! Leio a cada um deles!

LinkWithin

Related Posts Plugin for WordPress, Blogger...

RENDA EXTRA - Ganhe R$ 300,00 Por Dia com Estética e Depilação Em Sua Própria Casa

RENDA EXTRA - Ganhe R$ 300,00 Por Dia com Estética e Depilação Em Sua Própria Casa
Descubra a Fórmula Passo a Passo e Completa De Como Montar o Seu Próprio Studio de Depilação em sua própria Casa se Tornando um (a) “expert” Começando do Zero, Altamente Lucrativo Com Pouquíssimo Investimento. Em Apenas 30 Dias ou Menos Você Estará Pronto (a) Para Começar. O Único e Mais Completo Treinamento Que Ensinará Tudo o Que Você Precisa Saber e Fazer. Curso totalmente didático contendo mais de 4 horas de vídeo aulas, sem cortes contendo 4 tipos de virilhas completas, com vários tipos de ceras. Fórmula das ceras em video com passo passo de como prepara-la, vídeos com a prática de todas as partes do corpo. Depilação com ceras e com linha. Parte teórica com conteúdos riquíssimos e inovadores, Ebookcom mais de 160 páginas. Os resultados podem variar de pessoa para pessoa e o resultado esperado pode não ser alcançado.

Brava Cursos Online com certificado.

Divirta-se um pouquinho Professor (a) rsrs. Vista o bebê! É só arrastar os acessórios com o mouse!